Scientists reveal genetic architecture underlying alcohol, cigarette abuse

Have you ever wondered why one person can smoke cigarettes for a year and easily quit, while another person will become addicted for life? Why can’t some people help themselves from abusing alcohol and others can take it or leave it? One reason is a person’s genetic proclivity to abuse substances. UNC School of Medicine researchers led by Hyejung Won, PhD, are beginning to understand these underlying genetic differences. The more they learn, the better chance they will be able to create therapies to help the millions of people who struggle with addiction.

Won, assistant professor of genetics and member of the UNC Neuroscience Center, and colleagues identified genes linked to cigarette smoking and drinking. The researchers found that these genes are over-represented in certain kinds of neurons — brain cells that trigger other cells to send chemical signals throughout the brain.

The researchers, who published their work in the journal Molecular Psychiatry, also found that the genes underlying cigarette smoking were linked to the perception of pain and response to food, as well as the abuse of other drugs, such as cocaine. Other genes associated with alcohol use were linked to stress and learning, as well as abuse of other drugs, such as morphine.

Given the lack of current treatment options for substance use disorder, the researchers also conducted analyses of a publicly available drug database to identify potential new treatments for substance abuse.

“We found that antipsychotics and other mood stabilizers could potentially provide therapeutic relief for individuals struggling with substance abuse,” said Nancy Sey, graduate student in the Won lab and the first author of the paper. “And we’re confident our research provides a good foundation for research focused on creating better treatments to address drug dependency.”

Parsing the Genome

Long-term substance use and substance use disorders have been linked to many common diseases and conditions, such as lung cancer, liver disease, and mental illnesses. Yet, few treatment options are available, largely due to gaps in our understanding of the biological processes involved.

Source: Read Full Article