Tag: Human Biology

‘Nested sequences’: An indispensable mechanism for forming memories

Repetition is the best method for memorization, for neurons themselves. This is the principle behind what neurobiologists call sequence reactivations: during sleep, neurons in the hippocampus related to a task activate very quickly in turn in a precise order, which consolidates the memory of this task. Sequence reactivations are fundamental for long-term memorization and for

Genetic disease healed using genome editing

Parents of newborns may be familiar with the metabolic disorder phenylketonuria: in Switzerland, all newborn babies are screened for this genetic disease. If a baby is found to have phenylketonuria, it needs a special diet so that the amino acid phenylalanine does not accumulate in the body. Excess phenylalanine delays mental and motor development. If

Novel mechanism for generating our skeleton

There are more than 200 bones in the human body. Bone is formed during embryonic and postnatal skeletogenesis by two distinct, well-organized processes, intramembranous and endochondral ossification. Mesenchymal stem cells differentiate into chondrocytes to form a cartilaginous template, which, for long bones, induces bone formation through endochondral ossification. Extracellular signal-regulated kinase 5 (Erk5), which is

Making mice a tiny bit more human to study preterm birth: Research enhances ability to study biology of persistent public health problem

Preterm birth remains a global epidemic linked to a lifetime of potential health complications. It also is difficult to study in living creatures — especially the uniquely precise biology of preterm birth in humans. Researchers report in PLoS Biology successfully inserting just enough human DNA into transgenic laboratory mice that it allowed the team to

New technique reveals how Zika virus interacts inside our cells: Discovery could enable development of new anti-viral therapies

Scientists have developed a new technique that can determine how viruses interact with a host’s own RNA. As well as providing insight into how viruses direct the host cell to create new virus particles, this technique, published today in Nature Methods, could allow researchers to design artificial molecules capable of blocking the virus replication process

Superbugs jumping frequently between humans and animals

The MRSA staphylococcus is an example of a pathogen, the likes of which are often called superbugs. These are resistant to most antibiotics and can cause serious infections. “In the case of MRSA, these bacteria have also spread in hospitals almost world-wide,” says Jukka Corander, professor at the University of Helsinki, who was a member

New insights into what drives organ transplant rejection: Subset of cells appear to trigger rejection of skin grafts; pre-treating organs could have positive implications for face transplants

When it comes to transplant rejection, some organs are far trickier than others. Some transplantable organs, such as the liver, are readily accepted by the recipient’s immune system, rarely triggering an immune response and rejection. But the skin is a very different matter: Skin grafts have a high rate of rejection for unknown reasons. Investigators

Chromatin structure: Slip-sliding away…

In the cell nucleus, the genomic DNA is packaged into a tightly condensed form, which is referred to as chromatin. The basic unit of chromatin organization is the nucleosome, a DNA-protein complex consisting of a defined length of DNA wrapped around a bead-like structure which is made of histone proteins. The individual nucleosomes are connected

How enzyme detects ultraviolet light damage

Damage to DNA is a constant threat to cellular life, and so it is constantly monitored and detected by a family of enzymes called RNA polymerases, resulting in subsequent repair to maintain genome integrity. In a paper published this week in the journal PNAS, researchers at University of California San Diego School of Medicine, with

A human enzyme can biodegrade graphene

Myeloperoxidase — an enzyme naturally found in our lungs — can biodegrade pristine graphene, according to the latest discovery of Graphene Flagship partners in CNRS, University of Strasbourg (France), Karolinska Institute (Sweden) and University of Castilla-La Mancha (Spain). Among other projects, the Graphene Flagship designs based like flexible biomedical electronic devices that will interfaced with

Neanderthal mother, Denisovan father! Hybrid fossil: Newly-sequenced genome sheds light on interactions between ancient hominins

Together with their sister group the Neanderthals, Denisovans are the closest extinct relatives of currently living humans. “We knew from previous studies that Neanderthals and Denisovans must have occasionally had children together,” says Viviane Slon, researcher at the MPI-EVA and one of three first authors of the study. “But I never thought we would be

Lipid droplets play crucial roles beyond fat storage

Lipid droplets: they were long thought of merely as the formless blobs of fat out of which spare tires and muffin tops were made. But these days, they’re “a really hot area of research,” says Michael Welte, professor and chair of biology at the University of Rochester. That’s in part because lipid droplets have been

Major new vulnerability of childhood leukemia uncovered

Childhood leukemia is a diagnosis that no family ever wants to endure. While the treatment of most types of leukemia has improved steadily over the years, a few specific types remain very difficult to treat. One of these is called “mixed lineage leukemia,” and for children affected by this cancer, their chance of survival is

New platform poised to be next generation of genetic medicines: The novel tool has the potential to treat a variety of genetic diseases

A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation of genetic therapies. This editing platform, discovered by City of Hope’s Saswati Chatterjee, Ph.D., eventually may be used to cure inherited

New retinal ganglion cell subtypes emerge from single-cell RNA sequencing

Single-cell sequencing technologies are filling in fine details in the catalog of life. Researchers at the University of Connecticut Health Center (UConn Health) and The Jackson Laboratory (JAX) have identified 40 subtypes of retinal ganglion cells (RGCs) along with the genetic markers and transcription factors that differentiate them. Thanks to recent advances in droplet-based single-cell