Researchers at Utah State University have developed new devices to mechanically stress human cells in the lab. In a study published in Lab on a Chip, researchers Elizabeth Vargis, a USU assistant professor of biological engineering and Farhad Farjood, a Ph.D. student in Vargis’ Lab, wanted to better understand the triggers of age-related macular degeneration
A new cell culture platform allows researchers to observe never-before-seen behaviors of live cancer cells under the microscope, leading to explanations of long-known cancer characteristics. The easy-to-produce platform developed by Hokkaido University researchers offers cancer cells micro-scale attachment sites that elicit never-before-seen behaviors highly relevant to cancer’s clinical properties. The observation of these behaviors shed
Harvard University researchers have bioengineered a three-dimensional model of a human left heart ventricle that could be used to study diseases, test drugs and develop patient-specific treatments for heart conditions such as arrhythmia. The tissue is engineered with a nanofiber scaffold seeded with human heart cells. The scaffold acts like a 3D template, guiding the
A 10-fold increase in the ability to harvest mechanical and thermal energy over standard piezoelectric composites may be possible using a piezoelectric ceramic foam supported by a flexible polymer support, according to Penn State researchers. In the search for ways to harvest small amounts of energy to run mobile electronic devices or sensors for health
We and our partners use cookies on this site to improve our service, perform analytics, personalize advertising, measure advertising performance, and remember website preferences.Ok